ALL SCI-FI Forum Index ALL SCI-FI
The place to “find your people”.
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

TWO Exciting Discoveries

 
Post new topic   Reply to topic    ALL SCI-FI Forum Index -> SCIENCE now, add FICTION later
View previous topic :: View next topic  
Author Message
Eadie
Galactic Ambassador


Joined: 14 Dec 2013
Posts: 1695

PostPosted: Fri Dec 20, 2019 8:14 am    Post subject: TWO Exciting Discoveries Reply with quote

I gave been up all night watching the launch of the Boeing ULA Spaceliner watch and learned og these two discoveries.

We May Finally Understand the Moments Before the Big Bang

https://www.space.com/physicists-model-reheating-universe.html

There's a hole in the story of how our universe came to be. First, the universe inflated rapidly, like a balloon. Then, everything went boom.

But how those two periods are connected has eluded physicists. Now, a new study suggests a way to link the two epochs.

In the first period, the universe grew from an almost infinitely small point to nearly an octillion (that's a 1 followed by 27 zeros) times that in size in less than a trillionth of a second. This inflation period was followed by a more gradual, but violent, period of expansion we know as the Big Bang. During the Big Bang, an incredibly hot fireball of fundamental particles — such as protons, neutrons and electrons — expanded and cooled to form the atoms, stars and galaxies we see today.

The Big Bang theory, which describes cosmic inflation, remains the most widely supported explanation of how our universe began, yet scientists are still perplexed by how these wholly different periods of expansion are connected. To solve this cosmic conundrum, a team of researchers at Kenyon College, the Massachusetts Institute of Technology (MIT) and the Netherlands' Leiden University simulated the critical transition between cosmic inflation and the Big Bang — a period they call "reheating."

Related: From Big Bang to Present: Snapshots of Our Universe Through Time

"The post-inflation reheating period sets up the conditions for the Big Bang and, in some sense, puts the 'bang' in the Big Bang," David Kaiser, a professor of physics at MIT, said in a statement. "It's this bridge period where all hell breaks loose and matter behaves in anything but a simple way."

When the universe expanded in a flash of a second during cosmic inflation, all the existing matter was spread out, leaving the universe a cold and empty place, devoid of the hot soup of particles needed to ignite the Big Bang. During the reheating period, the energy propelling inflation is believed to decay into particles, said Rachel Nguyen, a doctoral student in physics at the University of Illinois and lead author of the study.
Click here for more Space.com videos...

"Once those particles are produced, they bounce around and knock into each other, transferring momentum and energy," Nguyen told Live Science. "And that's what thermalizes and reheats the universe to set the initial conditions for the Big Bang."

In their model, Nguyen and her colleagues simulated the behavior of exotic forms of matter called inflatons. Scientists think these hypothetical particles, similar in nature to the Higgs boson, created the energy field that drove cosmic inflation. Their model showed that, under the right conditions, the energy of the inflatons could be redistributed efficiently to create the diversity of particles needed to reheat the universe. They published their results Oct. 24 in the journal Physical Review Letters.

A crucible for high-energy physics

"When we're studying the early universe, what we're really doing is a particle experiment at very, very high temperatures," said Tom Giblin, an associate professor of physics at Kenyon College in Ohio and co-author of the study. "The transition from the cold inflationary period to the hot period is one that should hold some key evidence as to what particles really exist at these extremely high energies."

One fundamental question that plagues physicists is how gravity behaves at the extreme energies present during inflation. In Albert Einstein's theory of general relativity, all matter is believed to be affected by gravity in the same way, where the strength of gravity is constant regardless of a particle's energy. However, because of the strange world of quantum mechanics, scientists think that, at very high energies, matter responds to gravity differently.

The team incorporated this assumption in their model by tweaking how strongly the particles interacted with gravity. They discovered that the more they increased the strength of gravity, the more efficiently the inflatons transferred energy to produce the zoo of hot matter particles found during the Big Bang.

Now, they need to find evidence to buttress their model somewhere in the universe.

"The universe holds so many secrets encoded in very complicated ways," Giblin told Live Science. "It's our job to learn about the nature of reality by coming up with a decoding device — a way to extract information from the universe. We use simulations to make predictions about what the universe should look like so that we can actually start decoding it. This reheating period should leave an imprint somewhere in the universe. We just need to find it."

But finding that imprint could be tricky. Our earliest glimpse of the universe is a bubble of radiation left over from a few hundred thousand years after the Big Bang, called the cosmic microwave background (CMB). Yet the CMB only hints at the state of the universe during those first critical seconds of birth. Physicists like Giblin hope future observations of gravitational waves will provide the final clues.


Complex Quantum Teleportation Achieved For The 1st Time[/size]

https://phys.org/news/2019-08-complex-quantum-teleportation.html

The participating Chinese researchers also see great opportunities in multidimensional quantum teleportation. "The basics for the next-generation quantum network systems is built on our foundational research today", says Jian-Wei Pan from the University of Science and Technology of China. Pan recently held a lecture in Vienna at the invitation of the University of Vienna and the Academy.

In future work, the quantum physicists will focus on how to extend the newly gained knowledge to enable teleportation of the entire quantum state of a single photon or atom.


**********

Oh, boy! First a clue to how & why the "Big Bang" happened (without Sheldon!) then the first true steps to a transporter.
_________________
____________
Art Should Comfort the Disturbed and Disturb the Comfortable.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    ALL SCI-FI Forum Index -> SCIENCE now, add FICTION later All times are GMT - 5 Hours
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group